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Generation of a Polarization-Structured Spot Array and Its

Application to Polarization Imaging

MNIEy Z=HE
Taiki Suzaki

Abstract

Polarization imaging enables the visualization of polarization characteristics, which

is valuable for material evaluation and biological research. This study develops a method for gener-
ating polarization-structured illumination for polarization imaging. Experimental results demon-
strate its effectiveness in single-shot diattenuation imaging.
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Construction of a digital twin based on Gaussian splatting

for three-dimensional imaging through scattering media
P —1E

Kazuki Yamanouchi

Abstract

We aim to achieve accurate 3D imaging under scattering environment by using the

digital twin. In this study, we attempt to construct a 3D digital twin based on Gaussian Splatting
(3DGS). Gaussian Splatting is a method for representing 3D scenes using a collection of ellipsoids

with opacities following a 3D Gaussian distribution.

By introducing a scattering process into

the native algorithm, an object behind a scattering media can be reconstructed. The proposed
algorithm could remove the effect of scattering and construct a 3D model with high contrast.
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Vector wavefront sensing using transport-of-intensity equation
LA 1&&

Yuki Yamamoto

Abstract

Polarization and phase imaging is essential for analyzing material structures and

molecular orientations. This introduces a vector wavefront imaging technique using the transport-
of-intensity equation and a polarization camera. By analyzing intensity distributions, complex
amplitudes and phase retardation to map the vector optical field. Experimental results confirm

effectiveness.
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Image encryption using uneven media and retro-reflection

=4 BE
Kengo Iwabuchi

Abstract

Humans acquire about 80% of external information through vision. Thus, image and

video are widely used done as the way of presenting information. In presenting information, it is
effective not only to the many and unspecified people, but also to the specific people.As a method
that allows only those who possess a specific object to observe secret image information, image
encryption using retro-reflector and transparent spheres has been proposed. But, in this method,
the transparent spheres become larger as the image area to be encrypted expands. In this study,
we propose an alternative encryption method using a plate-like media with an uneven structure.
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Spatial photonic Ising machine with parallel processing using

bias-phase

AR R&
Takaaki Kihara

Abstract

A spatial photonic Ising machine (SPIM) is a computational system that utilizes

spatial light modulation to solve combinatorial optimization problems. In this study, we aim to
efficiently search for the optimal solution by employing a diffraction grating to simultaneously prop-
agate light with a spatial amplitude and phase distribution. The validity of the proposed method
is demonstrated by performing a solution search for a minimum cut problem as an optimization

problem example.
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Artifact-metrics Based on Physically Unclonable Function Using
Quantum-dot Network
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Ryohei Shibata

Abstract

A physically unclonable function (PUF) is gaining attention due to its capability

in high-level security for the Internet of Things (ToT) society. In this study, we investigated a
PUF using quantum-dot networks to apply it to secure authentication of artificial objects. In the
experiments, we evaluated the fundamental performance using fluorescence images of the quantum-
dot networks and confirmed their potential capabilities relating to uniqueness.
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Color object recognition using incoherent light

gk A
Kazuya Sudo

Abstract

In this study, we propose an object recognition system that utilizes color information

in optical responses to incoherent light. By extracting color-specific features of the target object
based on the analysis of the optical responses under patterned illumination, recognition perfor-
mance can be enhanced. Experimental results show that the proposed method achieved 66.7%
accuracy in binary classification using two classes selected from the CIFAR-10 dataset.
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Speeding up of DMD-based spatial photonic Ising machine with area encoding
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Abstract

Spatial photonic Ising machine (SPIM) is a physical computing system using spa-

tial light modulation to solve combinational optimization problems. SPIM is promising to solve
large-scale optimization problems, because the use of light provides the capability in high-speed
parallel processing. However, liquid crystal type of spatial light modulators (SLMs) for light mod-
ulation limit in increasing the computing speed. In this study, we propose an SPIM using a digital
micromirror device (DMD), the switching speed of which is more than tens of thousands Hz. Am-
plitude area encoding enable to modulate amplitude and phase by a single DMD. We successfully
achieved approximately six times the speed of the conventional system using the proposed method.
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Abstract:

A quantum dot (QD) network generates various fluorescence signals based on nonlinear en-
ergy dynamics, which depend on its structure and composition, and is utilized as a component
in physical reservoir computing. However, existing designs rely on random QD networks, which
are not optimal for enhancing the prediction performance. In this paper, we propose a method
for designing effective quantum dot networks to improve the performance of reservoir comput-
ing. The fluorescence signals from numerous virtual QD networks can be reproduced through
numerical simulation based on a deterministic mathematical model, and the QD networks gener-
ating the most significant signals contributing to the prediction performance are identified. We
demonstrated that QD reservoir computing using designed QD networks predicts time-series
data more accurately than using random QD networks in the numerical simulations.

1. Introduction

Quantum dots (QDs), which are nanoscale phosphors, are utilized across various fields including
sensing and imaging [1,2]. The diameter-dependent band gap of QDs allows for easy tuning of
the peak fluorescence wavelength [3]. By synthesizing QDs that emit light in the near-infrared
region to mitigate biological scattering effects, 3D imaging of tumor blood vessels up to a depth
of 1.2 mm is achieved [4]. Moreover, the absorption spectra of QDs are broader than those of
other organic phosphors, enabling dual-emission and single-excitation labeling experiments in
mouse fibroblasts [5, 6].

Forster resonance energy transfer (FRET), which occurs between phosphors such as QDs, is
a crucial functionality of QDs [7,8]. FRET efliciency is contingent upon the donor-acceptor
combination and their proximity. When phosphors are closely packed, the excited energy is
sequentially transferred through FRET [9], facilitating energy dynamics crucial for multi-step
FRET applications in nanoscale information processing. For instance, fluorescent molecules
arranged on DNA through multi-step FRET have facilitated nanoscale logic operations [10].
Complex arithmetic circuits, such as half adders and subtractors, were implemented using tem-
porally varying FRET pathways between different phosphors [11]. Viewing multi-step FRET as
a natural continuous-time Markov chain allows the construction of units that generate samples
conforming to various probability distributions in probabilistic computing [12]. The strate-
gic arrangement of QDs to generate FRET-modulated fluorescence signals enables nanoscale
computing.

A QD network comprises multi-step FRET in a structure where randomly distributed QDs
generate fluorescence signals contingent on their configuration. When pulsed lights are sequen-
tially irradiated, the excited energy in QDs is retained through multistep FRET, accumulating past
input pulses within the network. The resultant fluorescence signals exhibit nonlinear responses
based on the intensity and timing of the pulse sequences [13, 14].

Additionally, the fluorescence signals can be modulated by changing the spatial distribution
of the QDs. For instance, during electrophoretic deposition, the deposition time has been found
to influence the distribution of deposited QDs [15]; further, physically flexing the substrate
with QDs change the distances between QDs [16], thereby modulating the fluorescence signals.



By using lithographic techniques to fabricate a structure containing excitation paths formed by
randomly distributed QDs, useful fluorescence responses for nanophotonic devices have been
achieved [17].

The nonlinear signals of QD networks, modulated by temporal pulse sequences, are essential
for physical reservoir computing, which processes time-series data. Previously, we constructed
QD reservoir computing (QDRC) using QD networks as a reservoir layer and demonstrated
its capability to predict time-series signals of 1 bit delay XOR tasks with low mean squared
errors [15].

Photonic reservoir computing has been explored previously using various approaches, includ-
ing passive silicon photonics [18] and time-delayed lasers [19]. Compared to these methods, the
advantage of QDRC lies in the size of the system. A physical reservoir that uses QD networks
is based on light irradiation and energy transfer. Because of the connections without wiring
and the nanoscale size of the QD, it is possible to significantly reduce the size of the physical
reservoir. Furthermore, parallel processing of multiple time-series data can be achieved through
spatial multiplexing of the pulse sequences.

The prediction performance depends on the distribution and composition ratio of multiple
QDs. To utilize QD networks as reservoirs, they need to generate characteristic signals suitable
for prediction. QD networks can generate a variety of fluorescence signals depending on the
energy dynamic of the QDs through FRET. However, randomly dispersing QDs result in a
variety of structures that are not unique, which causes signals with similar characteristics to
be generated. Previous studies have shown that external mechanical manipulation can change
the overall spatial distribution of QDs and modulate the fluorescence signal. Nevertheless, the
potential differences in energy dynamics between locally existing QD networks have not been
fully explored. Reservoir computing performance can be enhanced by optimizing the topology
of the reservoir layer [20]. By identifying QD networks that generate characteristic signals, we
can unlock the potential of QD networks in reservoir computing, which has been obscured by
randomness, and broaden the range of prediction tasks that QDRC can handle.

We propose a method for designing QD networks that generate signals to enhance the pre-
diction performance of QDRC. To achieve this, a deterministic mathematical model of the QD
network using the rate equation is constructed. Although several methods can reproduce the
energy dynamics of fluorophores in simulations [21,22], they are not suitable for simulating sig-
nals from numerous QD networks due to the extensive computational time required by iterative
sampling based on Monte Carlo simulation. A deterministic algorithm allows for the repro-
duction of energy dynamics in the QD network without randomness, generating fluorescence
signals from a large number of QD networks. Utilizing this model, we designed QD networks
that produce significant signals contributing to prediction performance. Finally, we evaluated
the prediction performance of time-series signals using the QDRC designed by the proposed
method.

2. Quautum dot reservoir computing

In QDRC, the reservoir layer is constructed using an ensemble of QD networks. Multistep FRETs
induce the energy dynamics of QDs, and the QD networks generate nonlinear fluorescence
signals depending on the irradiation conditions. Figure 1 shows a schematic of the proposed
QDRC. In the input layer, time-series data is converted into a sequence of optical pulses, with
data values encoded in the peak intensity of these pulses. These encoded pulses are duplicated
and irradiated onto randomly distributed QDs. The light energy is absorbed by the QDs and
retained within the QD ensemble through multistep FRETs. Each QD is interconnected via
energy transfers, forming the QD networks that constitute the reservoir layer. Within this
network, the level occupancy effect, induced by energy absorption and saturation, generates
nonlinear responses with short-term memory due to energy dynamics, facilitating information

10



processing [15]. In the output layer, signals generated by each QD network are captured, and
the output is obtained by weighting individual signals. These weights are optimized by linear
regression methods such as ridge regression. The prediction performance relies on the output
signals from individual QD networks; thus, the design of QD networks enhances the capability
of information processing.

However, the design process requires validations of QD networks and iterative acquisition of
fluorescence signals. In this study, we implemented numerical simulation using a mathematical
model of the QDs and evaluated fluorescence signals generated from a large number of virtually
constructed QD networks.

Convert to pulse QD networks Linear combination
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Input layer Reservoir Output layer

Fig. 1. Schematics of quantum dot reservoir computing. OL:Objective lens.

3. Mathematical model of quantum dot networks
3.1. Rate equation of QDs

To reproduce the fluorescence signals generated by a large number of QD networks, we con-
struct a mathematical model of electron transitions within individual QDs using a deterministic
approach. Previous models have assumed that electrons in a QD transition between multiple
energy levels [23-25]. We develop a two-level system for electrons in QDs, incorporating FRET
and level occupancy effects. Figure 2 shows a Jablonski diagram representative of the QD
networks. The number of electrons in the ground and excitation levels are denoted as S, and S,
respectively. The total number of electrons within the QD remains constant S(= S, + Sg). The
rate equations for the excited electrons in the i-th QD, considering FRET and level occupancy
effects, are expressed as follows:

dS.; T, (1)
d?l = h:x Se,i = knr,iSe,i = kr,iSe,i — E KiwjSe.i+ gl E kj—iSe (D
i i#j i#]j

Here, 1.4 (1), h, O'iabs, and v; represent the irradiated photon density at time ¢, Planck’s constant,
the absorption cross-section, and the fluorescence frequency of the i-th QD, respectively. &, ;
and k- ; are the rate constants for the radiative and non-radiative relaxation processes, given by
kri=QilTisknri = (1 —Q;)/7i. Q; is the quantum yield and 7; is the fluorescence lifetime.
The first term in the rate equation (Eq. (1)) accounts for optical excitation, with the number
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Fig. 2. A Jablonski diagram of the QDs in the QD network.

Excitation

of electrons transitioning to the excitation level dependent on those in the ground level, Sy ;.
The second and third terms describe the energy emission through radiative and non-radiative
relaxation processes, respectively, with the transition probability dependent on the number of
excited electrons, S, ;. The fourth and fifth terms detail the FRET interactions between the i-th
and j-th QDs. FRET is explained by Forster’s theory [7], and its mathematical model is detailed
in Ref. [26]. Based on these theories and mathematical models, the rate constant of FRET is
expressed as

Ro(i, j, K, n)) )

kl—)
I Ti( R(i, J)

where R(i, j) is the distance between the i-th and j-th QDs. Ry (i, j, «, n) the Forster distance, is
a constant that depends on the QD type (i, j), orientation factor «, and refractive index n [7]. The
fifth term in Eq. (1) indicates the level occupancy effect, such as Auger recombination, induced
by FRET. When more electrons are in the excited state, Auger recombination is triggered,
causing electrons in the acceptor QD to transition to a higher energy level and subsequently
return to their original energy state through a non-radiative relaxation process [23,27]. This
return to the original level typically occurs within a few picoseconds [28]. In two-level systems,
electronic transitions through Auger recombination are rapid, and the excited electrons in the
acceptor remain in the excited state. The excitation energy received from other QDs by FRET
is lost through non-radiative recombination, which depends on the number of electrons in the
excited state. Consequently, the transition probability due to FRET varies based on the number
of electrons in the ground state, leading to nonlinear energy dynamics within the QDs.

The fluorescence signal from the QD network is the sum of the radiation energies from each
QD. The signal intensity f(¢) can be expressed as

F0) =3 (K iSe i(t) X ). (3)

Eq. (3) implies that the time-series fluorescence signal depends the number of electrons of the
QD at time ¢. The fluorescence signal generated by the QD network can be reproduced when a
sequence of pulses is irradiated using Eq. (1) — (3). Moreover, a deterministic algorithm based
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Table 2. QD parameters in the simulation. Absorption cross section values o2 are

shown for the irradiation wavelength of 400 nm.

Parameter QD type
QD490 QD540 QD580
Q 0.40 0.40 0.40
7 [ns] 9.4 8.6 7.9
v [Hz] 6.1x10"% 56x10% 52x10%
o [cm?] 2.1x1071% 13x107"7 1.6x107"
k, =Q/t [1/s] 4.3 x 107 4.7 x 107 5.1 x 107
knr=(1-=0)/t[1/s] 6.4x107 7.0 x 107 7.6 x 107
N=1/t 1.1x108 1.2x 108 1.3x 108
ol
8.0
I
QD490
9‘.0//6.5 7.3'\\.6.0
7.3 N
QD540 ¢ QD580
A 6.1 R\
4.6 6.9
’¢ NN
QD540 QD580

Fig. 3. Forster distances between the three types of QDs. The units of each value are
in nanometers.
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Fig. 4. Fluorescence signals generated by 1,000 types of QD networks. The position of
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excitation). (b) Irradiation intensity: 2.0 X 100 [W/ cm2] (Strong excitation).

4. Design of effective quantum dot networks

4.1. Rank evaluation of fluorescence signal and selection of QD network

To enhance prediction performance, it is necessary to generate the signals that contribute
significantly to the prediction. In RC, the orthogonality of outputs from the reservoir layer
is crucial for prediction performance and is employed as a performance metric [29-31]. To
design QD networks that enhance the performance of QDRC, we evaluated the rank of a
matrix composed of fluorescence signals. The temporal output from the QDRC is denoted as
Yout(#) (t =1,...,T). The output is expressed by

You = Fw, “4)

where Jour = (Your(1), ..., You(T))" and the matrix F = (fi,..., fnv) consists of the time-
series signals generated by the n-th QD network, written by f, = (f.(1),..., fu(T)T (n =
I,...,N). w=(wq,...,wn)" € RN is an N-dimensional weight vector, and the dimen-
sion of a vector space Y containing the output Yo, is determined by the rank of the matrix
F (dimY =dim (Im F) =rank F, Im F = {§ou € RT | 3w € RN, $ou = Fw}). When the di-
mension of Y is higher, the prediction accuracy of reservoir computing improves. We define
signals with a high rank of matrix F as ‘effective’ signals, leading to enhanced prediction per-
formance of the QDRC. Networks generating such signals are termed effective QD networks.
Initially, we generated N virtual QD networks, each containing L types of QDs with a total
count of M QDs. We posited that these networks cluster within the QD sample, and the spatial
distribution r;, ,, of the m-th QD in the n-th network was set to follow the three-dimensional
normal distribution: r, , ~ N3(0, s, E), where s, denotes the standard deviation of the normal
distribution, and E is the identity matrix. Subsequently, we simulated fluorescence signals from
these networks upon irradiation with pulsed light. Among the signals generated by the virtual
QD networks fi, ..., fn, we obtained a pair {f,, f,} with the maximum Euclidean distance
dmax = |.fp = f4 ||%. In linear regression, optimization through extensive weighting is costly. To
design QD networks that enable prediction, we choose K number of signals, such that the value of
Euclidean distance from f), or f, is closest to {0, dmax/2K’, 2dmax /2K’, . . ., (K" = 1)dmax /2K"}
where K’ = L%J The selected signals exhibited diverse fluorescence decay, characterizing
nonlinear responses with varying short-term memory due to energy dynamics. From these,
we derived the structures for the designed virtual QD network. The number of QDs in each
network was set at M = 20, with three types of QDs (QD490, QD540, and QD580) in equal
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proportions (L = 3). The properties of QD490, QD540, and QD580 used in the numerical
simulations are listed in Table 2, and the Forster distances between the QDs are shown in Fig. 3.
The QDs were distributed in three-dimensional space with standard deviations ranging from

200 -8
8 to 200 (s, =8+ 3000
sn, were simulated, and fluorescence signals at an irradiation intensity of 7 = 1.0 X 105 were
generated. With K set to 28, the rank of the signal matrix was evaluated. Figure 5 (a) displays
the 3,000 types of signals generated in the simulation and the 28 signals selected. To evaluate
the proposed algorithm, we used the Python library Numpy to analyze the ranks of matrices.
Figure 5 (b) presents a histogram of the ranks for the matrix Frapgom consisting of 28 randomly
selected signals. The numerical error tolerance was set at the maximum singular value of the
matrix F multiplied by its higher dimension size of F and the machine epsilon. The average rank
in 1,000,000 trials was 21.6, with the ranks of Fyangom ranging from 20 to 23 with a probability
of 98.8 %. Outliers were identified using the two-sigma rule, assuming a rank distribution
obtained over 1,000,000 trials. A red dashed line marks the rank of the matrix Fyesign, composed
of the selected signals, which was 26, matching that of the matrix Fy); , comprising all generated
signals. These results demonstrate that the proposed method effectively selects signals for the
matrix Fgesign With a high rank.

(n—1)]. A total of 3000 QD network types, each with a unique
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Fig. 5. (a) Calculated signals generated from 3,000 types of QD networks and 28 types
of QD networks. (b) Frequency distribution of the ranks of matrix Fyy,qom- The red
dash line indicates the rank of matrix Fgegign-

4.2. Performance evaluation

Next, we verified that the designed QD networks enhanced prediction accuracy. For benchmark
tasks of signal prediction, we employed the Mackey-Glass equation, Santa Fe time-series data,
and Nonlinear AutoRegressive Moving Average (NARMA) data [32-34]. The Mackey-Glass
equation is expressed as follows,

dx(1)
dr

bx(t —T1)

—ax(t) + (®))
where a, b, ¢, and n are constants, and 7 is the delay time. The Mackey-Glass equation exhibits
chaotic behavior depending on specific parameters. In our simulations, we set individual
parameters to a = 0.1, b = 0.2, ¢ = 1, n = 10, and 7 = 17 to generate a chaotic signal. The
Santa Fe time series data, which consist of intensity data recorded from a far-infrared laser in a
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chaotic state, are used in this study normalized by the maximum value. The m-order NARMA
model is written as

m—1

x(t+1) = ayx(t) + arx(t) Z x(t — i) +azu(t — m)u(t) + aq. (6)
i=0

Here, a, a;, a3, and a4 are constants, and u(¢) represents the temporal input. The parameters
were set to m = 2 and a; = 0.3, ap = 0.05, a3 = 1.5, and a4 = 0.1. The u(¢) values were
independently and identically drawn from a uniform distribution within the interval [0, 0.5].
These time-series data were encoded into pulse sequences and input into each designed QD
network. The frequency of the input signal was set to 1.0 GHz. Based on Eq. (4), the output was
obtained by the linear summation of the generated signals. The weights w were optimized using
ridge regression. For the prediction of the Mackey-Glass equation and Santa Fe time-series data,
a one-step-ahead prediction approach was employed, where the input one step ahead is predicted
from the reservoir state at each time step. In the case of the NARMA data, the output x(7 + 1)
represented the target signals and was predicted from the fluorescence signals when the input
was u(t). A dataset comprising 1200 steps of time-series data was utilized for optimization, and
600 steps of untrained data was used. To evaluate the performance, the normalized mean square
error (NMSE) was employed as follows:

2 (@) - yout(l‘))2
PIRGESE

where y(7), ¥ represents the target signal value and its average value, and yqu(?) is the output
value by QDRC. Figures 6 (a-c) illustrate the relationship between the rank of the matrix F,
constructed using the QD networks and the NMSE. The simulation trial using non-designed QD
networks was conducted 50 times, with each trial featuring different network structures. The
rank of the matrix Fyesign in the case of the designed QD networks was 26, FrandomWhereas for
the non-designed QD networks, the rank of the matrix ranged from 20 to 23. The average NMSE
decreased with increasing rank when using non-designed QDRCs; nonetheless, the NMSE of
the QDRC employing designed QD networks was the lowest. These results indicate that the
design of the QD network enhances the prediction performance of the QDRC. However, certain
prediction results using non-designed QD networks were better than those using designed ones,
particularly in the Santa Fe time-series data and NARMA data. We investigated the performance
of the QDRC using individual combinations of the QD networks. Figure 6 (d) displays the
relationship of the NMSE between the Santa Fe and NARMA tasks using the QDRC with a
matrix Frangom rank of 23. The orange and green lines represent the NMSE in QDRC using the
designed QD network (designed QDRC). While the QDRC using the non-designed QD network
predicted one time-series data with a higher NMSE, its performance in the prediction of the other
data was inferior compared with that using designed QD networks. The correlation coefficient
between the NMSE values for the two tasks was 0.031, indicating no significant correlation
between the prediction performances for the two tasks. This result suggests that the prediction
performances of the QDRC using non-designed QD networks vary depending on the tasks. The
NMSE of the designed QDRC in both tasks was better, demonstrating that the design of the QD
networks contributes to the prediction performance across a broad range of tasks.

We discuss short-term memory, an important property of reservoir computing. In QDRC,
the information of input signals is retained in the network through FRET and is eventually lost
via relaxation processes. Therefore, memory capacity, which is a measure of the short-term
memory, is related to the fluorescence decay of the QD network. Based on the definition in
Ref. [35], we estimated the memory capacity of the designed QDRC. We used a 500-step random
sequence as input, with each input value being a random number following a uniform distribution

NMSE =

(7)
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Fig. 6. Dependence of NMSE of the designed QDRC and the others on the rank of the
matrix F. (a) Mackey-Glass equation task. (b) Santa Fe task. (c) NARMA?2 task. (d)
Relationship between NMSE for Santa Fe and NARMA?2 tasks with random QDRC
and the designed QDRC. The green vertical and orange horizontal lines represent the
NMSE values of the designed QDRC for the Santa Fe and NARMA tasks, respectively.

over the interval [0,1]. The input signal frequency was set to 1 GHz, and the peak intensity was
1.0 x 10°. The target signal was a time-series signal delayed by d steps from the input signal.
Using this input signal and the target output, we calculated the coefficient of determination
between the input signal and output signal with the designed QDRC. Summing the coefficients
of determination for delay tasks from d = 1 to d = 20, we estimated the memory capacity to be
7.2, which is consistent with time 71/, in case of weak intensity. This result indicates that the
memory capacity of the QDRC can be estimated by measuring the fluorescence lifetime.
Precisely arranging QDs on the nanometer scale to form the designed QD network is challeng-
ing. However, in the experiment, one of the key advantages of our proposed method was utilized
for selecting signals suitable for computing from among numerous signals. It was demonstrated
that over 2,000 types of fluorescence signals can be acquired simultaneously by using a streak
camera [15]. The signals measured by the streak camera correspond to the various fluorescence
signals generated by QD networks, similar to the signals in Fig. 5 (a), and the design method de-
scribed in the previous section can be applied directly to the experiment. Therefore, our proposed
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method enables the selection of optimal signals for time-series prediction experimentally.

To evaluate prediction performance by using the rank of the reservoir state, a method using
kernel quality was proposed [30]. However, the rankings depend on the task because the
reservoir responses vary with the input data [29]. Furthermore, evaluating the rank of the matrix
F constructed from the fluorescence signals generated when a single pulse is irradiated onto the
QD networks leads to an estimation of the prediction performance for any task. This implies
that the performance of the QDRC can be assessed using a single pulse and not an encoded pulse
sequence. The designed QDRC can be utilized across a broad range of data prediction tasks,
although non-designed QDRCs demonstrate more accuracy for specific tasks. The proposed
method proves useful when the properties of the task to be solved are unknown in advance. If the
target data is predetermined, the rigorous arrangement of QDs following the design optimizes
performance in the QDRC [36].

5. Conclusion

In this paper, we proposed a method for designing QD networks that enhance the prediction
performance of QDRC. We constructed a mathematical model of the energy state of the QD,
accounting for FRET and level occupancy effects, to reproduce the fluorescence signals generated
by numerous QD networks. We confirmed that the fluorescence signals in the numerical
simulation are modulated depending on the irradiation conditions and the density of QDs,
exhibiting characteristics similar to experimental results. We designed QD networks to generate
signals that significantly contribute to the prediction of time-series data. By evaluating the rank
of the matrix representing the signals generated in the numerical simulation, the QD networks
to be designed were identified. The QDRC with the designed QD networks predicts time-series
data with higher accuracy than those with randomly-selected QD networks. The performance of
the designed QDRC is independent of the properties of the time-series data and can be utilized
in diverse fields. Our method expands the capability of QD networks and contributes to the
experimental development of QDRC. It is expected that the designed QDRC will enable the
prediction of a wide range of time-series data, including chaotic behavior in nature.
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Abstract: Quantum dot networks (QDNs), which generate a variety type of the fluorescence signal
depending on their structure, are useful for physical reservoir computing. However, random signals
generated by QDNs have been used in quantum dot reservoir computing (QDRC). In this study, we
proposed a method for designing QDN5s' structures which generate effective fluorescence signals to
improve the performance of the QDRC. We evaluated the signal diversity of the designed QDNs and
the prediction performance for Santa Fe time-series data.

1. Introduction

A quantum dot (QD), which is a nano meter-sized fluorophore, transfers its own energy to neighbor ones by Forster
resonance energy transfer (FRET) within several distances. The fluorescence signal generated from QDs can be
modulated depending on FRET efficiency. Quantum dot networks (QDNs), which are constructed by multiple-step
FRETs in randomly-distributed QDs, have the ability to generate a variety of fluorescence signal depending on the
network structure. Generation of diverse signals in time domain is useful for implementation of physical reservoir
computing (RC) which predicts time-series data [1]. We aim to the construction of a quantum dot reservoir computing
(QDRC) system and demonstated that QDN has an echo-state property which is a necessary function in RC [2]. However,
the relationship between the signals generated by the QDNs and the prediction performance in the QDRC remains
unknown. To maximize the performance of QDRC, it is necessary to construct QDNs generating effective fluorescence
signals for the prediction. In this study, we propose a method for design of QDN's' structure to generate a variety of
temporal signals for RC. By evaluating the independence of the signals generated by the numerous QDNs' structures, an
effective set of signals for the prediction is chosen. To verify the effectiveness of designed QD structures, we generate
the temporal signals by numerical simulation and evaluates the performance in prediction of chaotic signals.

2. The mathematical model of the QDN and the method of designing QDNs

First, the mathematical model of the QDN is described. Considering the electrons in a QD as a two-level system, the rate
equation for the excited electrons in the i-th QD is written as follows:
dN el Y l ex (t)

it~ hv; Noi = o iNei = feriNei = Zixjki_)jNe'i T Nor + Ny Nel + Ng i ZﬁijﬂN el )
Here, N,;, Ny ; are the number of electrons at the excited and ground states in the QDs. I,,(t),h are the irradiation
photon density at time ¢, the Planck constant, respectively. The absorption coefficient and the frequency of fluorescence
of i-th QD is represented as o;,v;. k, and k,, are rate constants of radiative and nonradiative relaxation processes,
and k;_,; is rate constants of FRET from i-th to j-th QD. The fluorescence signal at time ¢ generated from the QDN is

£t = Zi(km-Ne_i(t) X hvy) (t=1,..,T). )

Equations (1) and (2) can be used to calculate the time-series signal f = (f D,....f (T))T generated by the QDN.
Therefore, the fluorescence signals in the QDNs can be simulated by them.

DGenerate QDN structures @@ Calculate fluorescence signals

1000 2000 3000 4000

® Select a QDN pair (m,n) @ Select QDN so that the distance
with the largest Euclidean distance from f,, or f,, has different values

fm
fa

ul

— selected signals

3

5

[[£m = fall2

Fluorescence intensity[a.u.)

Fluorescence intensityla.
=

1000 20'0 m'ou 4000 1000 2000 3000 4000

Fig. 1 The procedure for the design of QDNs to generate effectlve signals.
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Figure 1 shows the procedure for the design of QDNs that provide effective signals. Initially, we randomly generated
N types of QDN structures. Individual fluorescence signals f; (i = 1,---,N) of the i-th QDN are calculated by Egs.
(1) and (2). The fluorescence signals are integrated as a matrix F = (fy,---, fy). The rank value of the matrix F
corresponds to the dimension of the output value. In RC, the predicted signal is regressed by the linear combination of
the output value. Therefore, the effective output values for RC are determined by the combination of QDNs with a high
rank of the matrix F. To select such a combination, we chose the pair of fluorescence signals f,, and f,that maximizes
the Euclidean distance || fi—f f”z between the two signals f; and f;. In addition, we selected the remaining QDNs

so that the distance from f,, or f, took different values. The various type of signals can be chosen by the proposed
method.

3. Evaluation by the rank of the fluorescence matrix

To investigate the effectiveness of the proposed method, we evaluated them by the rank of fluorescence matrix. In this
study, we generated 3000 types of QDN structures, and selected 18 types of QDNs. Figure 2(a) shows the temporal signals
generated from all types of QDNs and the selected 18 types of QDNSs. A variety of fluorescence signals can be selected.
The rank of the matrix F,,, consisting of the selected signals, was 14. Figure 2(b) shows the frequency distribution of the
ranks of the matrix F,nqom, When 18 types of the fluorescence signals were selected randomly. The average rank for a
random selection was 5.14, and the maximum value of the rank was 10 in 1000000 trials. This result shows that the QDNs
with effective fluorescence signal for the construction of the RC could be designed.
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Fig. 2. (a) The temporal signals from the selected 18 types of QDNs (red) and all types of QDNs (blue).
(b) The frequency distribution of the ranks of the matrix F,,qom-

4. Evaluation by the performance of quantum dot reservoir computing

Next, we investigated the well-designed effective QDNs improves the prediction performance of the QDRC. A one-step-
ahead prediction was performed on Santa Fe time-series data by using designed QDNs. The number of training and test
data was 800, and the Santa Fe signal was normalized by the maximum value. The prediction performance was evaluated
using the normalized mean square error (NMSE).

Figures 3(a) and (b) show the prediction results of the Santa Fe signal with QDRC composed of a randomly selected
QDNs (R-QDRC) and the designed QDNs (D-QDRC), respectively. The prediction result of R-QDRC is shown in Fig.
3(a). The NMSE calculated from prediction results of R-QDRC is 2.53 X 1071, In contrast, the NMSE of D-QDRC
shown in Fig. 3(b) was 1.91 X 1072, which is smaller than R-QDRC. This result shows that use of the designed QDN
improve the performance of RC.
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Fig. 3. Prediction results of Santa Fe signal. (a) R-QDRC. (b) D-QDRC.
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Polarization imaging is a technology which allows us to see invisible information of various samples to understand their
properties. Because polarization information relates to the changes of polarization states induced by a sample, illumination
is as important as detection. In this study, we aim to develop a polarization imaging method, using a polarization-structured
spot array as illumination. To assess the capability, we measured the diattenuation distribution of artificial and biological
objects as samples. Experimental results demonstrated that our method is effective to measure diattenuation in a single
shot.

Keywords: Polarization Imaging, Computer-generated Hologram, Diattenuation, Single shot

1.Introduction

Polarization imaging provides a unique opportunity for analyzing object’s properties such as birefringence and
diattenuation. Such information is useful when quantifying different properties of objects including biological samples.
Polarization measurement observes the changes of the polarization states before and after light interacts with an object. A
major polarization imaging technique requires switching incident polarization lights and precise mechanical drive [1]. This
measurement tends to take a high cost of acquisition time and the system implementation. In this paper, we aim to develop
a polarization imaging method using a polarization-structured spot array as an incident light. Diattenuation information of
objects, including artificial and biological samples, was measured to demonstrate the effectiveness of our method in
capturing polarization information in just a single shot.

2. Method of diattenuation imaging

The proposed method for obtaining the distribution (absorption rate and axis angle) of diattenuation using a polarization-
structured spot array as an illumination light is explained. In the polarization-structured spot array used, horizontal and
vertical linear polarization spots are regularly and densely arranged. In our method, two spots with different polarization
directions are simultaneously used for image construction based on spatial division multiplexing. The light transmitted
through a sample is imaged with a polarization imaging sensor to obtain information on different polarization components.
This approach allows us for single-shot polarization imaging.

We assume two linear diattenuation axes of a sample, referred to as a-axis and p-axis (absorption rate, u,, along the a-
axis is the maximum, and that along B-axis, p,, is the minimum,(0 < y; < p, < 1)). Ig_ang(6, @) is defined as light
intensity detected when the angle of a-axis is 6 and the angle of incidence light polarization is ¢. To obtain 6, the
intensity distributions for a set of four pairs of input polarization (0° or 90°) and detected polarization (45° or 135°)
are required. Using the intensity distribution set, we get diattenuation parameters 6, u,, U, as follows:

_ 1 -1 B

0 =3tan” (2). M

Asin(26)+B
P = 1- Slzr;siné+ ’ (2)

Asin(26)-B
where Hp = 1- Slzrisﬁ, (3)
A= 1,5(8,0) + 1,5(8,90) + L135(6,0) +1155(6,90), @
B =1,5(0,0) + 1,5(0,90) — I135(6,0) —I135(6,90), (5)

C =145(0,0) + 145(0,90) — I;35(6,0) —I;35(6,90). ©)
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3. Experiment

In the experiment, a polarization-structured spot array was generated by using a computer-generated hologram (CGH) with
a polarization converter, which converts linear polarization to azimuthal polarization. We illuminated a sample with the
polarization-structured spot array and captured the image with a polarization image sensor (TRI0O50S1-PC).

In the first experiment, we used an artificial object consisting of two polarization filters with the axis of 90° within the
upper part and 135° within the lower part as a target sample. Figure 1 shows the result. In Fig. 1 (b), line segments express
the angle of 6. Although, there are some errors, the direction of diattenuation axis is obtained. In Figs. 1 (c¢)(d), the map
of p, takes values close to zero and is clearly distinguished the area of polarization filters and the gap space. The map of
U, takes fairly greater values than that of ;. This shows that our method enables us to get diattenuation information in
just a single shot.

C

N\

2 ()

(d)

Figure 1. Experimental result on diattenuation imaging of an artificial object. (a)Acquired image, (b) direction of diattenuation axis,
(c) the map of absorption rate (i, (d) the map of absorption rate p,

Next, we applied our method to polarization imaging of potato starch granule to investigate the effectiveness of the method
not only for artificial objects but also for biological samples. Figure 2 shows the result of the experiment. The length of
the arrows indicates the difference of absorptance rate (1, — p4). We can confirm that the absorption difference inside the
starch granule is much smaller than that around the edge of the starch granule. This means that the absorption difference
is little inside the starch granule. This tendency matches with previous studies [3, 4].

In contrast, we can find some arrows pointing in specific directions along the edge of starch granule, which means the edge
tends to have stronger diattenuation. This is also consistent w1th previous studies [3, 4]. The results suggest potential
capability of our method. : -~

Figure 2. Direction of diattenuation axis (scaled) overlapped to the acquired image obtained in the experiment.

4. Conclusion
We have experimentally demonstrated the utility of our method in capturing polarization information from artificial and
biological samples. The results also show the potential for single-shot polarization imaging. The use of a polarization-
structured spot array as illumination will contribute to an extension of computational polarization imaging.
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A physically unclonable function (PUF) is gaining attention due to its capability in high-level security
for the Internet of Things (IoT) society. In this study, we investigated a PUF using quantum-dot networks
to apply it to secure authentication of artificial objects. In the experiments, we evaluated the fundamental
performance using fluorescence images of the quantum-dot networks and confirmed their potential
capabilities relating to uniqueness.
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Fig. 1 Examples of the ﬂuorescence response Fig. 2 The histogram of inter-HD (orange) and intra-HD (blue).

images of the QD network.

Left: Single pulse, Right: Double pulse.
ZE X

1) R. Pappu, B. Recht, J. Taylor and N. Gershenfeld: Science 297 (2002) 2026-2030.

2) N. Tate, Y. Miyata, S. Sakai, A. Nakamura, S. Shimomura, T. Nishimura, J. Kozuka, Y. Ogura and J. Tanida: Opt.
Express 30 (2022) 14669-14676.

Left: Single pulse, Right: Single pulse and Double pulse.
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Polarization Imaging via Polarization-Structured Illumination Microscope
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OCIS codes: (090.1760) Computer holography; (110.2945) Illumination design; (110.5405) Polarimetric imaging.

Polarized light imaging is an effective technique for visualizing invisible information of objects. For example, the
diattenuation and birefringence of an object can be quantitatively evaluated [1]. Such polarization information is
useful for understanding the function and structure of a material [2]. We are studying about a polarization imaging
method using polarization-structured illumination that contains an array of small light spots with different
polarization states [3]. In the previous system, the numerical aperture of the focusing lens used was low, so that the
resolution was not enough to observe a microscopic object. Enhancing resolution broadens the scope of applications
including bio-imaging, and therefore, we conducted fundamental experiments using a microscope to explore its
potential.

Our method uses a polarization-structured spot array for illumination to obtain the information of
diattenuation properties (absorption rate and axis angle) of a sample. In this array, horizontal and vertical linearly
polarized light spots are arranged in a dense and regular pattern by computer generated holography, allowing
simultaneous image construction of polarization images based on spatial division multiplexing. The light
transmitted through a sample is captured by a polarization camera, providing intensities on different polarization
components at a time. Next, the sample is assumed to have two diattenuation axes, with the maximum-absorption
rate @, and the minimum-absorption rate u,. To determin the orientation angle 6 of the maximum absorption
axis, intensity distributions from four pairs of polarization inputs (0° or 90°) and detection angles (45° or 135°) are
analyzed. This intensity dataset allows for the calculation of the diattenuation parameters 6, pq, and .

Figure 1(a) shows the optical system we used. In a microscopy system, the light wave is focused by a 20x
objective lens to generate a structured polarization spot array on a sample. The transmitted light from the sample is
observed using a 40x objective lens. In the experiment, we used polarization filters with the axis of 45° and 135°
as target samples. Figure 1 (b) shows the result. The line segments express the orientation angle of 6. Although,
there are some errors, the direction of diattenuation axis is obtained. We confirm that the method enables us to get
diattenuation information of objects using a microscope.

Polarization- slmc(uved pot array
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Fig. 1 (a) Experimental setup. (b) Direction of the diattenuation axis of polarization filters with the axis of
of 45°(upper) and 135°(lower).
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Three-dimensional imaging through scattering media
by constructing a digital twin based on Gaussian Splatting
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Introduction

Imaging through scattering media is an important technique in various fields including bioimaging. In recent
years, optical and computational approaches have developed the field of scattering imaging. However, while
many of these methods focus on the two-dimensional shape of the object, achieving three-dimensional (3D)
imaging continues to be a challenging task. A digital twin, which is a digital model constructed by data assim-
ilation, emulates a complicated shape and a behavior of a physical object in virtual space. The construction of
the digital twin and its interaction with a physical process enable the imaging of complex objects which would
be difficult to observe in real space. We aim to achieve accurate 3D imaging through scattering media by using
the digital twin. In this study, we attempt to construct a 3D digital twin based on Gaussian Splatting [1].
Gaussian Splatting is a method for representing 3D scenes using ellipsoids with opacities following a 3D
Gaussian distribution. By introducing a scattering or de-scattering process into the native algorithm, which is
proposed in Ref. [1], an object behind a scattering media can be reconstructed. We investigated a 3D model
for a blurred object constructed by the proposed method.

Method

Figure 1 shows a procedure of the proposed Gaussian Splatting with scattering process. A set of images cap-
tured from multiple viewpoints is input to Structure-from-Motion (SfM) [2], which produces a point cloud and
estimates a set of camera poses, which are positions and orientations of cameras. The initial point cloud is
converted to a set of 3D Gaussians with opacities following a Gaussian distribution by adding three parameters:
(a) 3D covariance matrix X, (b) opacity a, and (c) spherical harmonic coefficient ¢ which represents the color.
For rendering, the 3D covariance matrix is transformed to a 2D covariance matrix £2P in the coordinates de-
termined by the camera poses estimated by SfM. Each pixel value in rendered images is formulated as the
alpha-blending of N ordered points that overlap the pixel: Cpix = >N cl-aiZD ]_[5-_1(1 — ajZD ), where al-ZD rep-
resents the i-th Gaussian’s opacity weighted by the 2D Gaussian covariance £2P. In this study, the scattering
process produces scattering images (Iscat) from the rendered images (Igs) with the pixel value Cpi as follows:

Iscar = PSF * Igg, (1D
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Fig. 1 A procedure of the proposed algorithm with scattering process.
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where * denotes the convolution and PSF is a point spread function. Image degradation such as blurring and
scattering is modeled by the convolution with a PSF [3]. By introducing this process, the effects of scattering
cam be removed. The 3D Gaussian parameters (position, covariance, opacity, color) are optimized by stochas-
tic gradient descent techniques using a loss function based on the L1 norm and the D-SSIM term with the
captured images and scattering images. In addition, the number of Gaussians and their density over unit volume
is controlled adaptively by cloning and splitting it in two. A de-scattered 3D models can be constructed by
iterating this procedure.

Experiment

(@) Ground Truth

To verify the de-scattering capability of the
proposed method, a set of blurred images was
input to the native and proposed algorithm.
As the blurred images, we used a set of im-
ages created by convolving a PSF on the im-
ages of the target object captured from multi-
ple viewpoints. The PSF was represented by
a Gaussian distribution with standard devia-
tion of 5 pixels, and the same PSF was used
in equation (1). Figures 2(a)-(c) show the im-
age of the object from a viewpoint, and the
reconstructed images by native and proposed
algorithm. While native Gaussian Splatting
remained a blurred image, the proposed
method reconstructed the object without blur.
To evaluate the contrast, the width of the (c) Scattering Gaussian Splatting
white line on the object was measured along
the blue horizontal line in the enlarged im-
ages. Figure 2(d) shows the widths in each
image from all viewpoints. The concordance
ratio between the widths of the captured and
reconstructed images is 26.3% for the pro-
posed method, compared to 3.95% for the na-
tive method. We demonstrated that the pro-  (d)

posed method could construct a 3D model 40 .oowoo‘oow )
with high contrast. B e g A
35 “‘)ID. .'900 ¢+
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ing the convolution and deconvolution of the o“Z: @® Ground Truth
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Fig. 2 Reconstruction results. A captured image from a
Acknowledge viewpoint (a) and reconstructed images by native (b) and
i scattering Gaussian Splatting (c), and partial enlarged im-
This work was supported by JST KAKENHI 5564 of them. (d) The distribution of widths of the white line
Grant Number JP20H05890. on the object in the images from all viewpoints.
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Generation of Hadamard-type coded illumination using Frozen wave
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A frozen wave (FW) is a light wave whose intensity distribution can be controlled in three dimensions. In this study,
the FW is used to generate Hadamard-code illumination with a width in the z-axis direction towards 3D single pixel
imaging (SPI). In simulation we demonstrated generation of Hadamard-code illumination in two separated spaces. It
was also confirmed that the coded illumination could be restored on the back side even if it was partially hidden. These

results show the potential of the FW-based coded illumination for 3D SPI.
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In this study, we propose an object recognition system based on responses to incoherent light with color
information. By obtaining optical responses to incoherent light-pattern illumination and by extracting
the color information of a target object in the optical responses, the recognition performance can be
improved. We demonstrated that the proposed system achieved 66.7% accuracy in binary classification
using two classes from the CIFAR-10 dataset.
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Fig.1 MLSPI using color information
SE 3R

1) Jiao Shuming et al., “Optical machine learning with incoherent light and a single-pixel detector,” Optics Letters,
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A spatial-photonic Ising machine (SPIM) solves combinatorial optimization problems based on optical
modulation. Although the SPIM has high scalability for the variable number, a liquid-crystal spatial light
modulator used for optical modulation limits the computing speed. In this study, we propose a new
scheme of the SPIM by using a micro mirror device (DMD) which is a high speed SLM. Binary phase
control and area encoding enable computation of the SPIM using DMD and achieve high computing
speed. We demonstrated that proposed method could enhance computation speed by a factor of six.
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Fig. 1 Generation principle Fig. 2 Left: Numerical calculation; Right: Experimental result
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