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Abstract:
A quantum dot (QD) network generates various fluorescence signals based on nonlinear en-

ergy dynamics, which depend on its structure and composition, and is utilized as a component
in physical reservoir computing. However, existing designs rely on random QD networks, which
are not optimal for enhancing the prediction performance. In this paper, we propose a method
for designing effective quantum dot networks to improve the performance of reservoir comput-
ing. The fluorescence signals from numerous virtual QD networks can be reproduced through
numerical simulation based on a deterministic mathematical model, and the QD networks gener-
ating the most significant signals contributing to the prediction performance are identified. We
demonstrated that QD reservoir computing using designed QD networks predicts time-series
data more accurately than using random QD networks in the numerical simulations.

1. Introduction

Quantum dots (QDs), which are nanoscale phosphors, are utilized across various fields including
sensing and imaging [1, 2]. The diameter-dependent band gap of QDs allows for easy tuning of
the peak fluorescence wavelength [3]. By synthesizing QDs that emit light in the near-infrared
region to mitigate biological scattering effects, 3D imaging of tumor blood vessels up to a depth
of 1.2 mm is achieved [4]. Moreover, the absorption spectra of QDs are broader than those of
other organic phosphors, enabling dual-emission and single-excitation labeling experiments in
mouse fibroblasts [5, 6].

Förster resonance energy transfer (FRET), which occurs between phosphors such as QDs, is
a crucial functionality of QDs [7, 8]. FRET efficiency is contingent upon the donor-acceptor
combination and their proximity. When phosphors are closely packed, the excited energy is
sequentially transferred through FRET [9], facilitating energy dynamics crucial for multi-step
FRET applications in nanoscale information processing. For instance, fluorescent molecules
arranged on DNA through multi-step FRET have facilitated nanoscale logic operations [10].
Complex arithmetic circuits, such as half adders and subtractors, were implemented using tem-
porally varying FRET pathways between different phosphors [11]. Viewing multi-step FRET as
a natural continuous-time Markov chain allows the construction of units that generate samples
conforming to various probability distributions in probabilistic computing [12]. The strate-
gic arrangement of QDs to generate FRET-modulated fluorescence signals enables nanoscale
computing.

A QD network comprises multi-step FRET in a structure where randomly distributed QDs
generate fluorescence signals contingent on their configuration. When pulsed lights are sequen-
tially irradiated, the excited energy in QDs is retained through multistep FRET, accumulating past
input pulses within the network. The resultant fluorescence signals exhibit nonlinear responses
based on the intensity and timing of the pulse sequences [13, 14].

Additionally, the fluorescence signals can be modulated by changing the spatial distribution
of the QDs. For instance, during electrophoretic deposition, the deposition time has been found
to influence the distribution of deposited QDs [15]; further, physically flexing the substrate
with QDs change the distances between QDs [16], thereby modulating the fluorescence signals.



By using lithographic techniques to fabricate a structure containing excitation paths formed by
randomly distributed QDs, useful fluorescence responses for nanophotonic devices have been
achieved [17].

The nonlinear signals of QD networks, modulated by temporal pulse sequences, are essential
for physical reservoir computing, which processes time-series data. Previously, we constructed
QD reservoir computing (QDRC) using QD networks as a reservoir layer and demonstrated
its capability to predict time-series signals of 1 bit delay XOR tasks with low mean squared
errors [15].

Photonic reservoir computing has been explored previously using various approaches, includ-
ing passive silicon photonics [18] and time-delayed lasers [19]. Compared to these methods, the
advantage of QDRC lies in the size of the system. A physical reservoir that uses QD networks
is based on light irradiation and energy transfer. Because of the connections without wiring
and the nanoscale size of the QD, it is possible to significantly reduce the size of the physical
reservoir. Furthermore, parallel processing of multiple time-series data can be achieved through
spatial multiplexing of the pulse sequences.

The prediction performance depends on the distribution and composition ratio of multiple
QDs. To utilize QD networks as reservoirs, they need to generate characteristic signals suitable
for prediction. QD networks can generate a variety of fluorescence signals depending on the
energy dynamic of the QDs through FRET. However, randomly dispersing QDs result in a
variety of structures that are not unique, which causes signals with similar characteristics to
be generated. Previous studies have shown that external mechanical manipulation can change
the overall spatial distribution of QDs and modulate the fluorescence signal. Nevertheless, the
potential differences in energy dynamics between locally existing QD networks have not been
fully explored. Reservoir computing performance can be enhanced by optimizing the topology
of the reservoir layer [20]. By identifying QD networks that generate characteristic signals, we
can unlock the potential of QD networks in reservoir computing, which has been obscured by
randomness, and broaden the range of prediction tasks that QDRC can handle.

We propose a method for designing QD networks that generate signals to enhance the pre-
diction performance of QDRC. To achieve this, a deterministic mathematical model of the QD
network using the rate equation is constructed. Although several methods can reproduce the
energy dynamics of fluorophores in simulations [21,22], they are not suitable for simulating sig-
nals from numerous QD networks due to the extensive computational time required by iterative
sampling based on Monte Carlo simulation. A deterministic algorithm allows for the repro-
duction of energy dynamics in the QD network without randomness, generating fluorescence
signals from a large number of QD networks. Utilizing this model, we designed QD networks
that produce significant signals contributing to prediction performance. Finally, we evaluated
the prediction performance of time-series signals using the QDRC designed by the proposed
method.

2. Quautum dot reservoir computing

In QDRC, the reservoir layer is constructed using an ensemble of QD networks. Multistep FRETs
induce the energy dynamics of QDs, and the QD networks generate nonlinear fluorescence
signals depending on the irradiation conditions. Figure 1 shows a schematic of the proposed
QDRC. In the input layer, time-series data is converted into a sequence of optical pulses, with
data values encoded in the peak intensity of these pulses. These encoded pulses are duplicated
and irradiated onto randomly distributed QDs. The light energy is absorbed by the QDs and
retained within the QD ensemble through multistep FRETs. Each QD is interconnected via
energy transfers, forming the QD networks that constitute the reservoir layer. Within this
network, the level occupancy effect, induced by energy absorption and saturation, generates
nonlinear responses with short-term memory due to energy dynamics, facilitating information



processing [15]. In the output layer, signals generated by each QD network are captured, and
the output is obtained by weighting individual signals. These weights are optimized by linear
regression methods such as ridge regression. The prediction performance relies on the output
signals from individual QD networks; thus, the design of QD networks enhances the capability
of information processing.

However, the design process requires validations of QD networks and iterative acquisition of
fluorescence signals. In this study, we implemented numerical simulation using a mathematical
model of the QDs and evaluated fluorescence signals generated from a large number of virtually
constructed QD networks.
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Fig. 1. Schematics of quantum dot reservoir computing. OL:Objective lens.

3. Mathematical model of quantum dot networks

3.1. Rate equation of QDs

To reproduce the fluorescence signals generated by a large number of QD networks, we con-
struct a mathematical model of electron transitions within individual QDs using a deterministic
approach. Previous models have assumed that electrons in a QD transition between multiple
energy levels [23–25]. We develop a two-level system for electrons in QDs, incorporating FRET
and level occupancy effects. Figure 2 shows a Jablonski diagram representative of the QD
networks. The number of electrons in the ground and excitation levels are denoted as 𝑆𝑔 and 𝑆𝑒,
respectively. The total number of electrons within the QD remains constant 𝑆(= 𝑆𝑒 + 𝑆𝑔). The
rate equations for the excited electrons in the 𝑖-th QD, considering FRET and level occupancy
effects, are expressed as follows:

𝑑𝑆𝑒,𝑖
𝑑𝑡

=
𝜎abs
𝑖 𝐼𝑒𝑥 (𝑡)
ℎ𝜈𝑖

𝑆𝑔,𝑖 − 𝑘𝑛𝑟,𝑖𝑆𝑒,𝑖 − 𝑘𝑟 ,𝑖𝑆𝑒,𝑖 −
∑
𝑖≠ 𝑗

𝑘𝑖→ 𝑗𝑆𝑒,𝑖 +
𝑆𝑔,𝑖

𝑆𝑖

∑
𝑖≠ 𝑗

𝑘 𝑗→𝑖𝑆𝑒, 𝑗 . (1)

Here, 𝐼𝑒𝑥 (𝑡), ℎ, 𝜎abs
𝑖 , and 𝜈𝑖 represent the irradiated photon density at time 𝑡, Planck’s constant,

the absorption cross-section, and the fluorescence frequency of the 𝑖-th QD, respectively. 𝑘𝑟 ,𝑖
and 𝑘𝑛𝑟,𝑖 are the rate constants for the radiative and non-radiative relaxation processes, given by
𝑘𝑟 ,𝑖 = 𝑄𝑖/𝜏𝑖 , 𝑘𝑛𝑟,𝑖 = (1 − 𝑄𝑖)/𝜏𝑖 . 𝑄𝑖 is the quantum yield and 𝜏𝑖 is the fluorescence lifetime.
The first term in the rate equation (Eq. (1)) accounts for optical excitation, with the number
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Fig. 2. A Jablonski diagram of the QDs in the QD network.

of electrons transitioning to the excitation level dependent on those in the ground level, 𝑆𝑔,𝑖 .
The second and third terms describe the energy emission through radiative and non-radiative
relaxation processes, respectively, with the transition probability dependent on the number of
excited electrons, 𝑆𝑒,𝑖 . The fourth and fifth terms detail the FRET interactions between the 𝑖-th
and 𝑗-th QDs. FRET is explained by Förster’s theory [7], and its mathematical model is detailed
in Ref. [26]. Based on these theories and mathematical models, the rate constant of FRET is
expressed as

𝑘𝑖→ 𝑗 =
1
𝜏𝑖

(
𝑅0 (𝑖, 𝑗 , 𝜅, 𝑛)
𝑅(𝑖, 𝑗)

)6
, (2)

where 𝑅(𝑖, 𝑗) is the distance between the 𝑖-th and 𝑗-th QDs. 𝑅0 (𝑖, 𝑗 , 𝜅, 𝑛) the Förster distance, is
a constant that depends on the QD type (𝑖, 𝑗), orientation factor 𝜅, and refractive index 𝑛 [7]. The
fifth term in Eq. (1) indicates the level occupancy effect, such as Auger recombination, induced
by FRET. When more electrons are in the excited state, Auger recombination is triggered,
causing electrons in the acceptor QD to transition to a higher energy level and subsequently
return to their original energy state through a non-radiative relaxation process [23, 27]. This
return to the original level typically occurs within a few picoseconds [28]. In two-level systems,
electronic transitions through Auger recombination are rapid, and the excited electrons in the
acceptor remain in the excited state. The excitation energy received from other QDs by FRET
is lost through non-radiative recombination, which depends on the number of electrons in the
excited state. Consequently, the transition probability due to FRET varies based on the number
of electrons in the ground state, leading to nonlinear energy dynamics within the QDs.

The fluorescence signal from the QD network is the sum of the radiation energies from each
QD. The signal intensity 𝑓 (𝑡) can be expressed as

𝑓 (𝑡) =
∑
𝑖

(𝑘𝑟 ,𝑖𝑆𝑒,𝑖 (𝑡) × ℎ𝜈𝑖). (3)

Eq. (3) implies that the time-series fluorescence signal depends the number of electrons of the
QD at time 𝑡. The fluorescence signal generated by the QD network can be reproduced when a
sequence of pulses is irradiated using Eq. (1) – (3). Moreover, a deterministic algorithm based



on the Euler method enables the calculation of the fluorescence signal without numerous trials.
Thus, the fluorescence signals from various QD networks can be reproduced, facilitating the
numerical simulation of QDRC.

3.2. Evaluation of rate equation

Fluorescence decay under various irradiation conditions and types of QD samples was observed
when pulsed light was irradiated on a QD ensemble [13]. The observed signal featured a multi-
component exponential decay of fluorescence. The decay rate of fluorescence increases with
higher QD density or irradiation intensity. To verify the proposed model of the QD network, we
compared the fluorescence decay generated by numerical simulations with experimental results.
Table 1 lists the physical parameters used for the simulations. QD networks were prepared by
mixing QDs into polydimethylsiloxane (PDMS) and spreading them on a slide glass [14]. The
refractive index 𝑛 was set to that of PDMS. The orientation factor 𝜅2 was set to 2/3, which is
the dynamic isotropic average of 𝜅2, assuming that the QDs were randomly dispersed and the
orientations of QDs were within the dynamic averaging regime. The excitation wavelength was
set at 400 nm, and the pulse width was adjusted according to the measured light intensity of the
pulsed laser used in the experiment. Table 2 shows the values of the QD parameters. Förster
distances between the three types of QDs are illustrated in Fig. 3. These QD parameters were
derived from the experimental measurements of QD samples (QD490: 753904, Sigma-Aldrich;
QD540 and QD 580: CZ540 and CZ580, NN-labs, LLC).

Table 1. Physical parameters in the simulation.

Parameter Value

𝑛 1.44

𝜅2 2/3
Excitation wavelength 400[nm]

Pulse width in time domain 74[ps]

We assumed that the QD network can be regarded as QDs distributed in three-dimensional
space. The network comprises 20 QDs, with their positions following a three-dimensional
normal distribution with a standard deviation 𝑠, corresponding to the density of the QDs. We
generated one thousand types of QD networks consisting solely of QD580, while varying the
standard deviation between 8 and 200 nm.

Figure 4 shows the simulated fluorescence signals under irradiation of the generated QD
networks with a single pulse of light. Individual signal is normalized by the value at time 𝑡 = 0.
The simulated fluorescence intensity decreased exponentially, which reproduced the behavior
of the fluorescence decay. Under an irradiation intensity of 1.0 × 105, the difference of the
decay depending on the standard deviation 𝑠 of QDs’ spatial distribution is shown in Figure
4(a). Furthermore, the decay was swifter in case of the intensity of 2.0 × 106 [Figure 4(b)]. To
evaluate the decay, we measured the average and standard deviation of time 𝑡1/𝑒 at which the
normalized intensity reached 1/𝑒. While 𝑡1/𝑒 was 7.27±0.41 ns in case of weak intensity, it was
6.42 ± 0.87 ns in case of high intensity. Moreover, the decay in case of the intensity of 2.0× 106

was speedier under smaller values of 𝑠. The simulation result shows non-single exponential
decay, which corresponds with a previous result [13, 21]. We have confirmed that our model
reproduces the fluorescence signals of the QD network.



Table 2. QD parameters in the simulation. Absorption cross section values 𝜎abs are
shown for the irradiation wavelength of 400 nm.

Parameter QD type

QD490 QD540 QD580

𝑄 0.40 0.40 0.40

𝜏 [ns] 9.4 8.6 7.9

𝜈 [Hz] 6.1 × 1014 5.6 × 1014 5.2 × 1014

𝜎abs [cm2] 2.1 × 10−16 1.3 × 10−17 1.6 × 10−17

𝑘𝑟 = 𝑄/𝜏 [1/s] 4.3 × 107 4.7 × 107 5.1 × 107

𝑘𝑛𝑟 = (1 −𝑄)/𝜏 [1/s] 6.4 × 107 7.0 × 107 7.6 × 107

𝑁 = 1/𝜏 1.1 × 108 1.2 × 108 1.3 × 108

QD490

QD490

QD580QD540

QD540 QD580

8.0

6.94.6

9.0 6.5 7.3 6.0

6.1

7.3

[nm]

Fig. 3. Förster distances between the three types of QDs. The units of each value are
in nanometers.
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Fig. 4. Fluorescence signals generated by 1,000 types of QD networks. The position of
the QDs follows three-dimensional normal distribution, and 𝑠 represents the standard
deviation of its distribution. (a) Irradiation intensity: 1.0 × 105 [W/cm2] (Weak
excitation). (b) Irradiation intensity: 2.0 × 106 [W/cm2] (Strong excitation).

4. Design of effective quantum dot networks

4.1. Rank evaluation of fluorescence signal and selection of QD network

To enhance prediction performance, it is necessary to generate the signals that contribute
significantly to the prediction. In RC, the orthogonality of outputs from the reservoir layer
is crucial for prediction performance and is employed as a performance metric [29–31]. To
design QD networks that enhance the performance of QDRC, we evaluated the rank of a
matrix composed of fluorescence signals. The temporal output from the QDRC is denoted as
𝑦out (𝑡) (𝑡 = 1, . . . , 𝑇). The output is expressed by

𝒚̂out = 𝑭𝒘, (4)

where 𝒚̂out = (𝑦out (1), . . . , 𝑦out (𝑇))⊤ and the matrix 𝑭 = ( 𝒇1, . . . , 𝒇𝑁 ) consists of the time-
series signals generated by the 𝑛-th QD network, written by 𝒇𝑛 = ( 𝑓𝑛 (1), . . . , 𝑓𝑛 (𝑇))⊤ (𝑛 =
1, . . . , 𝑁). 𝒘 = (𝑤1, . . . , 𝑤𝑁 )⊤ ∈ R𝑁 is an 𝑁-dimensional weight vector, and the dimen-
sion of a vector space Y containing the output 𝒚̂out is determined by the rank of the matrix
𝑭

(
dimY = dim (Im 𝐹) = rank 𝑭, Im 𝐹 = { 𝒚̂out ∈ R𝑇 | ∃𝒘 ∈ R𝑁 , 𝒚̂out = 𝑭𝒘}

)
. When the di-

mension of Y is higher, the prediction accuracy of reservoir computing improves. We define
signals with a high rank of matrix 𝑭 as ‘effective’ signals, leading to enhanced prediction per-
formance of the QDRC. Networks generating such signals are termed effective QD networks.
Initially, we generated 𝑁 virtual QD networks, each containing 𝐿 types of QDs with a total
count of 𝑀 QDs. We posited that these networks cluster within the QD sample, and the spatial
distribution 𝒓𝑛,𝑚 of the 𝑚-th QD in the 𝑛-th network was set to follow the three-dimensional
normal distribution: 𝒓𝑛,𝑚 ∼ N3 (0, 𝑠𝑛𝑬), where 𝑠𝑛 denotes the standard deviation of the normal
distribution, and 𝑬 is the identity matrix. Subsequently, we simulated fluorescence signals from
these networks upon irradiation with pulsed light. Among the signals generated by the virtual
QD networks 𝒇1, . . . , 𝒇𝑁 , we obtained a pair { 𝒇𝑝 , 𝒇𝑞} with the maximum Euclidean distance
𝑑max = ∥ 𝒇𝑝 − 𝒇𝑞 ∥2

2. In linear regression, optimization through extensive weighting is costly. To
design QD networks that enable prediction, we choose𝐾 number of signals, such that the value of
Euclidean distance from 𝒇𝑝 or 𝒇𝑞 is closest to {0, 𝑑max/2𝐾 ′, 2𝑑max/2𝐾 ′, . . . , (𝐾 ′−1)𝑑max/2𝐾 ′}
where 𝐾 ′ =

⌊
𝐾
2
⌋
. The selected signals exhibited diverse fluorescence decay, characterizing

nonlinear responses with varying short-term memory due to energy dynamics. From these,
we derived the structures for the designed virtual QD network. The number of QDs in each
network was set at 𝑀 = 20, with three types of QDs (QD490, QD540, and QD580) in equal



proportions (𝐿 = 3). The properties of QD490, QD540, and QD580 used in the numerical
simulations are listed in Table 2, and the Förster distances between the QDs are shown in Fig. 3.
The QDs were distributed in three-dimensional space with standard deviations ranging from

8 to 200
(
𝑠𝑛 = 8 + 200 − 8

3000
(𝑛 − 1)

)
. A total of 3000 QD network types, each with a unique

𝑠𝑛, were simulated, and fluorescence signals at an irradiation intensity of 𝐼 = 1.0 × 105 were
generated. With 𝐾 set to 28, the rank of the signal matrix was evaluated. Figure 5 (a) displays
the 3,000 types of signals generated in the simulation and the 28 signals selected. To evaluate
the proposed algorithm, we used the Python library Numpy to analyze the ranks of matrices.
Figure 5 (b) presents a histogram of the ranks for the matrix 𝑭random consisting of 28 randomly
selected signals. The numerical error tolerance was set at the maximum singular value of the
matrix 𝑭 multiplied by its higher dimension size of 𝑭 and the machine epsilon. The average rank
in 1,000,000 trials was 21.6, with the ranks of 𝑭random ranging from 20 to 23 with a probability
of 98.8 %. Outliers were identified using the two-sigma rule, assuming a rank distribution
obtained over 1,000,000 trials. A red dashed line marks the rank of the matrix 𝑭design, composed
of the selected signals, which was 26, matching that of the matrix 𝑭all , comprising all generated
signals. These results demonstrate that the proposed method effectively selects signals for the
matrix 𝑭design with a high rank.
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Fig. 5. (a) Calculated signals generated from 3,000 types of QD networks and 28 types
of QD networks. (b) Frequency distribution of the ranks of matrix 𝑭random. The red
dash line indicates the rank of matrix 𝑭design.

4.2. Performance evaluation

Next, we verified that the designed QD networks enhanced prediction accuracy. For benchmark
tasks of signal prediction, we employed the Mackey-Glass equation, Santa Fe time-series data,
and Nonlinear AutoRegressive Moving Average (NARMA) data [32–34]. The Mackey-Glass
equation is expressed as follows,

𝑑𝑥(𝑡)
𝑑𝑡

= −𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 𝜏)
𝑐 + 𝑥(𝑡 − 𝜏)𝑛 , (5)

where 𝑎, 𝑏, 𝑐, and 𝑛 are constants, and 𝜏 is the delay time. The Mackey-Glass equation exhibits
chaotic behavior depending on specific parameters. In our simulations, we set individual
parameters to 𝑎 = 0.1, 𝑏 = 0.2, 𝑐 = 1, 𝑛 = 10, and 𝜏 = 17 to generate a chaotic signal. The
Santa Fe time series data, which consist of intensity data recorded from a far-infrared laser in a



chaotic state, are used in this study normalized by the maximum value. The 𝑚-order NARMA
model is written as

𝑥(𝑡 + 1) = 𝑎1𝑥(𝑡) + 𝑎2𝑥(𝑡)
𝑚−1∑
𝑖=0

𝑥(𝑡 − 𝑖) + 𝑎3𝑢(𝑡 − 𝑚)𝑢(𝑡) + 𝑎4. (6)

Here, 𝑎1, 𝑎2, 𝑎3, and 𝑎4 are constants, and 𝑢(𝑡) represents the temporal input. The parameters
were set to 𝑚 = 2 and 𝑎1 = 0.3, 𝑎2 = 0.05, 𝑎3 = 1.5, and 𝑎4 = 0.1. The 𝑢(𝑡) values were
independently and identically drawn from a uniform distribution within the interval [0, 0.5].
These time-series data were encoded into pulse sequences and input into each designed QD
network. The frequency of the input signal was set to 1.0 GHz. Based on Eq. (4), the output was
obtained by the linear summation of the generated signals. The weights 𝒘 were optimized using
ridge regression. For the prediction of the Mackey-Glass equation and Santa Fe time-series data,
a one-step-ahead prediction approach was employed, where the input one step ahead is predicted
from the reservoir state at each time step. In the case of the NARMA data, the output 𝑥(𝑡 + 1)
represented the target signals and was predicted from the fluorescence signals when the input
was 𝑢(𝑡). A dataset comprising 1200 steps of time-series data was utilized for optimization, and
600 steps of untrained data was used. To evaluate the performance, the normalized mean square
error (NMSE) was employed as follows:

NMSE =
∑
𝑡 (𝑦(𝑡) − 𝑦out (𝑡))2∑
𝑡 (𝑦(𝑡) − 𝑦̄)2 , (7)

where 𝑦(𝑡), 𝑦̄ represents the target signal value and its average value, and 𝑦out (𝑡) is the output
value by QDRC. Figures 6 (a-c) illustrate the relationship between the rank of the matrix 𝑭,
constructed using the QD networks and the NMSE. The simulation trial using non-designed QD
networks was conducted 50 times, with each trial featuring different network structures. The
rank of the matrix 𝑭design in the case of the designed QD networks was 26, 𝑭randomwhereas for
the non-designed QD networks, the rank of the matrix ranged from 20 to 23. The average NMSE
decreased with increasing rank when using non-designed QDRCs; nonetheless, the NMSE of
the QDRC employing designed QD networks was the lowest. These results indicate that the
design of the QD network enhances the prediction performance of the QDRC. However, certain
prediction results using non-designed QD networks were better than those using designed ones,
particularly in the Santa Fe time-series data and NARMA data. We investigated the performance
of the QDRC using individual combinations of the QD networks. Figure 6 (d) displays the
relationship of the NMSE between the Santa Fe and NARMA tasks using the QDRC with a
matrix 𝑭random rank of 23. The orange and green lines represent the NMSE in QDRC using the
designed QD network (designed QDRC). While the QDRC using the non-designed QD network
predicted one time-series data with a higher NMSE, its performance in the prediction of the other
data was inferior compared with that using designed QD networks. The correlation coefficient
between the NMSE values for the two tasks was 0.031, indicating no significant correlation
between the prediction performances for the two tasks. This result suggests that the prediction
performances of the QDRC using non-designed QD networks vary depending on the tasks. The
NMSE of the designed QDRC in both tasks was better, demonstrating that the design of the QD
networks contributes to the prediction performance across a broad range of tasks.

We discuss short-term memory, an important property of reservoir computing. In QDRC,
the information of input signals is retained in the network through FRET and is eventually lost
via relaxation processes. Therefore, memory capacity, which is a measure of the short-term
memory, is related to the fluorescence decay of the QD network. Based on the definition in
Ref. [35], we estimated the memory capacity of the designed QDRC. We used a 500-step random
sequence as input, with each input value being a random number following a uniform distribution
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Fig. 6. Dependence of NMSE of the designed QDRC and the others on the rank of the
matrix 𝑭. (a) Mackey-Glass equation task. (b) Santa Fe task. (c) NARMA2 task. (d)
Relationship between NMSE for Santa Fe and NARMA2 tasks with random QDRC
and the designed QDRC. The green vertical and orange horizontal lines represent the
NMSE values of the designed QDRC for the Santa Fe and NARMA tasks, respectively.

over the interval [0,1]. The input signal frequency was set to 1 GHz, and the peak intensity was
1.0 × 105. The target signal was a time-series signal delayed by 𝑑 steps from the input signal.
Using this input signal and the target output, we calculated the coefficient of determination
between the input signal and output signal with the designed QDRC. Summing the coefficients
of determination for delay tasks from 𝑑 = 1 to 𝑑 = 20, we estimated the memory capacity to be
7.2, which is consistent with time 𝑡1/𝑒 in case of weak intensity. This result indicates that the
memory capacity of the QDRC can be estimated by measuring the fluorescence lifetime.

Precisely arranging QDs on the nanometer scale to form the designed QD network is challeng-
ing. However, in the experiment, one of the key advantages of our proposed method was utilized
for selecting signals suitable for computing from among numerous signals. It was demonstrated
that over 2,000 types of fluorescence signals can be acquired simultaneously by using a streak
camera [15]. The signals measured by the streak camera correspond to the various fluorescence
signals generated by QD networks, similar to the signals in Fig. 5 (a), and the design method de-
scribed in the previous section can be applied directly to the experiment. Therefore, our proposed



method enables the selection of optimal signals for time-series prediction experimentally.
To evaluate prediction performance by using the rank of the reservoir state, a method using

kernel quality was proposed [30]. However, the rankings depend on the task because the
reservoir responses vary with the input data [29]. Furthermore, evaluating the rank of the matrix
𝑭 constructed from the fluorescence signals generated when a single pulse is irradiated onto the
QD networks leads to an estimation of the prediction performance for any task. This implies
that the performance of the QDRC can be assessed using a single pulse and not an encoded pulse
sequence. The designed QDRC can be utilized across a broad range of data prediction tasks,
although non-designed QDRCs demonstrate more accuracy for specific tasks. The proposed
method proves useful when the properties of the task to be solved are unknown in advance. If the
target data is predetermined, the rigorous arrangement of QDs following the design optimizes
performance in the QDRC [36].

5. Conclusion

In this paper, we proposed a method for designing QD networks that enhance the prediction
performance of QDRC. We constructed a mathematical model of the energy state of the QD,
accounting for FRET and level occupancy effects, to reproduce the fluorescence signals generated
by numerous QD networks. We confirmed that the fluorescence signals in the numerical
simulation are modulated depending on the irradiation conditions and the density of QDs,
exhibiting characteristics similar to experimental results. We designed QD networks to generate
signals that significantly contribute to the prediction of time-series data. By evaluating the rank
of the matrix representing the signals generated in the numerical simulation, the QD networks
to be designed were identified. The QDRC with the designed QD networks predicts time-series
data with higher accuracy than those with randomly-selected QD networks. The performance of
the designed QDRC is independent of the properties of the time-series data and can be utilized
in diverse fields. Our method expands the capability of QD networks and contributes to the
experimental development of QDRC. It is expected that the designed QDRC will enable the
prediction of a wide range of time-series data, including chaotic behavior in nature.
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