Parallel processing of spatial photonic Ising machine by spatial multiplexing

Suguru Shimomura

Graduate school of Information Science and Technology, Osaka University E-mail: s-shimomura@ist.osaka-u.ac.jp

Combinational optimization problems

What is best route in shortest time?

Finding a best combination from many choices. Ex. Traveling salesman problem, knapsack problem

They are known as NP-hard problem.

Number of spots	Number of combinations
4	3
8	2520
16	6.5×10 ¹¹
32	4.1×10^{33}
64	9.9×10 ⁸⁶

Number of combinations increases exponentially.

Ising model

Interaction: .]

Spin states: σ

External magnetic field: h

Phase modulations

indicating different spin states

Problems are represented as the model of magnetic material.

Solutions are evaluated as Ising Hamiltonian

$$\mathcal{H} = -\sum_{i,j} oldsymbol{J} \sigma_j \sigma_k - \sum_{i} h_j \sigma_j$$

Combination and conditions is encoded into spin states and interactions.

Optimal solutions are obtained by minimizing the Ising Hamiltonian.

Spatial photonic Ising machine (SPIM)

(D. Pierangeli, et al., Phys. Rev. Lett., 122(21), 213902, 2019)

Spins are encoded into a phase distribution

Ising Hamiltonian:

$$\mathcal{H} = -I(0) = -\sum_{j, k} \xi_j \xi_k \sigma_j \sigma_k$$
$$J_{j,k} \propto \xi_j \xi_k$$

Phase update so that intensity is maximized.

Features

- Number of Spin: 8.0×10⁴

• Constant calculation time

Evaluation of Hamiltonians

Update by using multiple data

Parallel Processing by spatial multiplexing

Conventional SPIM:

→ One Ising Hamiltonian

Proposed method:

→ Multiple Ising Hamiltonian

Key techniques

- Spatial mutiplexing
- Demixing with designed bias phase

Processing of multiple spin states provides multiple Ising Hamiltionian and reduction of iteration.

→ Realization for high-speed SPIM

Feedback and update speed: 60-120 Hz Enormous iterations for searching the solutions

Limitation of processing time in SPIM.

Demixing with bias phase

0. Output pattern of SPIM

$$I(\boldsymbol{x}) = \sum_{j,h} \xi_j \xi_h \sigma_j \sigma_h \delta_W^2(\boldsymbol{x}) \exp\{2iW(h-j)\boldsymbol{x}\}\$$

 $\delta_W(\boldsymbol{x})$: Sinc function \boldsymbol{x} : coordinates of output pattern W : Pixel pitch of SLM

1. Bias phase with grating pattern

$$\phi_{{\rm bias},j} = 2\pi\alpha j$$
 α : Angle of grating

2. Redefinition of spins

Parameters

$$\sigma_j = \exp\{i(\phi + \phi_{\text{bias,j}})\} \qquad \phi \in \{0, \pi\}$$

3. Shifting position of the Ising Hamiltonian

$$I(\alpha) = \mathcal{H} = \sum_{j, h} \xi_j \xi_h \sigma_j \sigma_h$$

Number of spins: 100

Number of iterations: 150

Phase distribution Output pattern Without adding bias phase

Without multiplexing

Output pattern Phase distribution Adding bias phase

Optical setup

Captured image

Searching result by using SPIM with spatial multiplexing

0.6 0.5

Optimized solution

2 multiplexing

Number of multiplexing	Probability for obtaining the optimized solution
Without	0.0 %
2	3.0 %
3	5.0 %
4	9.0 %

Results

- Intensity inceased by iterations.
- Ising Hamiltonians decreased rapidly.
- Solution distribution become better.
- Accuracies increased by spatial multiplexing.

We demonsrated that the use of spatial multiplexing enhance an capability to search the optimal solution.

Summary

- The spatial photonic Ising machine enables to solve the optimal solutions of the combinational optimization problems.
- By using spatial multiplexing, multiple Ising Hamiltonians at individual spin states are obtained simitaneously.
- Ising Hamiltonian decreased more by using spatial multipexing
- The number of trials in which the optimal solutions are obtained increased depending on the number of multiplexing.

Acknoledgements

This resarch is supported by

- JSPS KAKENHI (Grant Number 23H04805)
- JST-ALCA-Next Program (Grant Number JPMJAN23F2)
- CREST (Grant Number JPMJCR18K2)