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Abstract: Three-dimensional imaging through scattering media is important in medical7

science and astronomy. We propose a digital-twin imaging method based on Gaussian splatting8

to observe an object behind a scattering medium. A digital twin model built through data9

assimilation, emulates the behavior of objects and environmental changes in a virtual space.10

By constructing a digital twin using point clouds composed of Gaussians and simulating the11

scattering process through the convolution of a point spread function, three-dimensional objects12

behind a scattering medium can be reproduced as a digital twin. In this study, a high-contrast13

digital twin reproducing a three-dimensional object was successfully constructed from degraded14

images, assuming that data were acquired from wavefronts disturbed by a scattering medium.15

This technique reproduces objects by integrating data processing with image measurements.16

1. Introduction17

Optical imaging is a fundamental technology for observing objects and is widely applied in18

various fields including medical science and astronomy. High-resolution or high-contrast imag-19

ing enables the observation of deep tissue conditions in vivo, providing an understanding of20

biological mechanisms. In astronomy, observing distant objects furthers our understanding of21

the universe. However, scattering media distort optical wavefronts, making it difficult to observe22

the target objects accurately. Obtaining information about objects from optical signals scattered23

by the environment remains challenging, and several data processing-based methods have been24

proposed.25

Computational imaging is a promising approach for extracting object information from26

scattered signals by combining optical and computational processing [1–3]. For example,27

Richardson–Lucy and Wiener deconvolutions are well-known methods for removing scattering28

effects from degraded images [4]. Modeling a scattering medium allows for the reproduction of29

light propagation and the recovery of object structures [5, 6]. Digital holography techniques re-30

construct object images from the interference patterns of the speckles and reference beams [7–9].31

In addition, speckle correlation and phase retrieval algorithms offer noninvasive imaging for ob-32

serving objects behind a scattering medium [10–13]. Another approach involves estimating the33

transmission matrix that characterizes light propagation [14]. The transmission matrix can be34

estimated by measuring the optical responses of the object, and the object can be reconstructed35

using the matrix inverse function [15,16]. Machine learning enables the modeling of scattering36

processes and reconstruction of object images from speckle patterns [17–19]. Computational37

imaging can provide high-contrast object images from scattered signals by employing various38

retrieval algorithms. In these methods, it is important to obtain the light-scattering response39

from a limited spatial region in advance. The contrast and spatial resolution of the reconstructed40

image depend on the amount of captured data, and long measurement times are required to extend41

the field of view behind the scattering medium. In conventional methods, object reconstruction42

is performed under the assumption that the scattering medium remains time invariant. However,43

biological and atmospheric turbulence changes dynamically, making it difficult to reconstruct44

images based on previously obtained data. In addition, reconstructing three-dimensional (3D)45

objects requires multiple measurements depending on the cross-sectional view of the recon-46



structed object. Consequently, efficient reconstruction of 3D objects from images degraded47

by scattering remains a significant challenge. These issues can be addressed by simultane-48

ously optimizing the measurement and reconstruction by integrating optical and computational49

processing.50

A digital twin constructed through data assimilation is a promising technology for integrating51

data acquisition and processing [20]. Through simulation using digital-twin dynamics, the52

environmental and object changes can be emulated in cyberspace. The emulation results are53

analyzed and fed back into the data acquisition method in the physical space. The digital twin is54

updated by using the acquired data and utilized for the emulation again. By iterative update, the55

emulation accurately reproduces the changes in the physical system. The use of a digital twin56

not only reproduces, but also predicts object behavior through iterative emulation and analysis,57

facilitating optimization and decision-making for efficient data acquisition. By integrating a58

digital twin into computational imaging, complex light scattering can be modeled, analyzed,59

and used to efficiently reproduce objects behind the scattering media.60

This paper presents a digital-twin imaging method for reproducing 3D objects behind the61

scattering media. In the proposed method, a digital twin representing the object behind the62

scattering medium is constructed using captured images that are degraded by scattering. By63

emulating the scattering process in cyberspace and iteratively updating the digital twin, the 3D64

structure of the object can be reproduced. Construction of a digital twin requires modeling the65

target object. We employed a method that models an object as a collection of points, allowing66

for flexible adaptation without a predefined spatial resolution. The optical response of an object67

can be described as the sum of the signals at each point. Thus, an image of the target object68

can be obtained if the individual optical responses are accurately reproduced in cyberspace. To69

represent the digital twin as point clouds, we employed Gaussian splatting (GS), which represents70

a 3D space using Gaussians [21]. In GS, 3D objects are flexibly represented by optimizing the71

parameters of each Gaussian based on images captured from multiple viewpoints. Previous72

studies demonstrated 3D imaging of the human body based on coherent tomography using73

GS [22, 23]. Furthermore, combining neural fields with GS enables the creation of realistic 3D74

spaces without motion blurring [24,25]. In the proposed method, the digital twin is constructed75

and iteratively updated based on a GS algorithm that incorporates the scattering process. To76

validate the proposed method, we evaluated the structure of a digital twin constructed from77

blurred images captured from multiple viewpoints.78

2. Digital twin constructed and updated by descattering Gaussian splatting79

For realizing the digital-twin imaging, it is important to construct and update a digital twin80

by modeling the target object and phenomena in cyberspace and by using the measurement81

data. To reproduce an object behind a scattering medium from the degraded images, each82

Gaussian’s parameters are optimized such that their rendered images, which degraded by a83

virtually simulated scattering process, correspond to the actual captured images. Hereafter,84

we refer to GS incorporating the scattering process as descattering Gaussian splatting (DGS).85

Figure 1 shows the DGS process. Initially, the target object behind the scattering medium is86

captured from multiple viewpoints. The initial point cloud are distributed in the 3D space, and87

the parameters of each Gaussian are initialized. These points are then converted into Gaussians88

using the following equation:89

𝐺 (𝑥) = 𝑒−
1
2 (𝑥−𝜇𝑖 )𝑇Σ𝑖 (𝑥−𝜇𝑖 ) , (1)

where 𝒙 are the spatial coordinates, and 𝜇𝑖 is the center position of the 𝑖-th point. Σ is the90

3D covariance matrix that represents the shape of the Gaussian. Individual Gaussians have91

parameters 𝛼 and spherical harmonic coefficient 𝑐, which represent their opacity and color,92

respectively. The Gaussians are then projected onto a 2D image by rendering. During the93



projection, the 3D covariance matrix Σ [26] is converted into a 2D covariance for rendering.94

After converting the parameters of the individual Gaussians to 2D, the images are rendered by95

a differentiable tile rasterizer using the positions and poses estimated from the captured images.96

Each pixel value 𝐼pix in the rendered image 𝐼𝐺𝑆 is formulated as an alpha blending of 𝑁 ordered97

points that overlap the pixel:98

𝐼pix = Σ𝑁
𝑖 𝑐𝑖𝛼

2𝐷
𝑖

𝑖−1∏
𝑗

(1 − 𝛼2𝐷
𝑗 ), (2)

where 𝛼2𝐷
𝑖 is the opacity of the 𝑖-th Gaussian weighted by the 2D Gaussian covariance Σ2𝐷

99

to 𝛼𝑖 . To construct a digital twin for modeling the target object behind a scattering medium100

using Gaussians, the scattering and optimization processes must be integrated. In the proposed101

method, we introduce a scattering process by convolution with a point spread function (PSF)102

which represents the light propagation through the scattering medium. In the proposed method,103

the rendered images 𝐼𝐺𝑆 are virtually degraded into 𝐼𝑑𝑒𝑔 by convolving them with a point spread104

function (PSF) representing light propagation:105

𝐼𝑑𝑒𝑔 = PSF ⊗ 𝐼𝐺𝑆 , (3)

where ⊗ denotes a convolution operation. The use of PSF allows the simulation of the scattering106

process in cyberspace, thereby enabling the construction of a digital twin of a 3D object behind107

the scattering medium. The loss function 𝐿 was computed using the mean absolute error (MAE)108

and structural similarity index measure (SSIM) between the rendered images after convolution109

and the captured images. Each Gaussian’s parameters are updated through backward processing110

of the loss function via deconvolution of virtually degraded images. In conventional GS, the111

digital twin is constructed from degraded images, and the reconstructed object remains blurred.112

In contrast, the proposed DGS constructs the digital twin of the target object using information113

prior to light degradation, by explicitly modeling the scattering process. As a result, the object114

behind the scattering medium can be reconstructed accurately. In adaptive density control,115

Gaussians are split, cloned, or removed based on the gradient of the loss function 𝐿. Through116

optimization process, the digital twin, which consists of Gaussians, is continuously updated117

using both virtual and actual images. Finally, the emulation results in cyberspace represent the118

actual them in real space, and therefore, the digital twin can reproduce the object behind the119

scattering medium.120

3. 3D object reproduction by digital-twin imaging based on DGS121

To evaluate the performance of the proposed method, we reproduced a 3D object as a digital122

twin from blurred images.123

3.1. Experimental setup124

To construct a digital twin using DGS with a descattering process, it is necessary to capture125

the target object from multiple viewpoints. Figure 2 shows the experimental setup to acquire126

images from various angles. The target object was placed at the center of a table, and a rail was127

positioned along its side. The target object was imaged using a CMOS camera (Sony 𝛼7III). The128

camera moved along the rail, covering a length of 420 mm, corresponding to a 36.6 ◦ field of129

view. The distance between the camera and the target object was set to 280 mm to ensure that130

the entire object and its surface could be observed in the captured images. The focal length of131

the lens was set to 105 mm, and the imaging area was 575 × 385 mm2 at the center of the rail.132
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Fig. 1. DGS to construct a digital twin of the target object using images degraded by
a scattering medium.

Fig. 2. Experimental setup for imaging the target object from various viewpoints.

3.2. Digital twin with three-dimensional structure constructed by DGS133

To assess the performance of the proposed method, digital twins were constructed from blurred134

images. A rugby ball with an uneven surface was used as the target object [Fig. 3 (a)]. By135

using structure from motion (SfM), which estimates camera parameters, including position and136

orientation, initial points clouds are generated [27,28]. To validate the proposed method, images137

degraded by the scattering medium were virtually generated by convolving the captured images138

using a PSF. Assuming a scattering process, the PSF was modeled as a 2D Gaussian distribution139

with a standard deviation of five pixels as shown in Fig. 3 (b). To investigate whether DGS140

can reproduce the scattering process and reconstruct a three-dimensional object from blurred141

images, we compared and evaluated the surface details of the digital twins constructed using142

the proposed DGS with that constructed using conventional GS. Figures 3 (c) and (d) show the143



digital twins constructed using the conventional GS and the proposed DGS, respectively. A144

total of 76 images were utilized as inputs to SfM within each framework. The rendered views of145

each digital twin and the captured images from various angles are provided in Supplementary146

Material Visualization 1. The surface of the ball constructed using the conventional GS was147

blurred [Fig. 3 (c)]. By contrast, the topography of the digital twin constructed using DGS148

was clearly reproduced [Fig. 3(d)]. Figures 3 (e) and (f) show pixel intensity profiles along149

the blue lines in Figures 3 (c) and (d), respectively. The pixel values of individual profiles are150

normalized with respect to their respective maximum values. With the conventional GS, the151

regions representing the uneven surface of the ball were not reproduced, although the white lines152

were preserved. The proposed method successfully constructed the digital twin with an uneven153

surface that closely corresponded to the ground truth, as measured from the actual images of154

the rugby ball. The mean squared error (MSE) between the pixel values of the ground truth and155

those of the conventional GS was 9.7. In contrast, the MSE of the proposed DGS was 3.6. These156

results demonstrate that integrating the scattering and construction processes allows the digital157

twin to retain fine surface details, even when generated from blurred images. To evaluate 3D158

structural reproducibility, the widths of the red lines with arrows were measured from virtually159

generated images captured from multiple angles. Figure 3 (g) shows the measured linewidths160

from different viewpoints. The widths of the digital twin constructed using the proposed161

method closely matched those obtained from the actual images. The concordance ratio between162

the widths of the captured and rendered images was 0.26 for DGS, compared with 0.04 for163

conventional GS. These results confirm that the proposed method effectively reproduces 3D164

objects with high fidelity. In the case of a PSF with a standard deviation of more than twenty165

pixels, the digital twin could not be constructed using DGS. This is because the degradation166

effect caused the characteristic points in the captured images to be lost, preventing the SfM from167

generating initial points. To construct a digital twin under strong degradation conditions, the168

initial points must be generated without characteristic points.169

3.3. Position estimation of a light-emitting diode array using DGS170

Next, we evaluated the accuracy of the digital twin constructed via DGS by estimating the171

position of a light-emitting diode (LED) array from degraded images by scattering. As a target172

object, We employed a LED array with three LEDs (LED-1, LED-2, and LED-3) arranged in173

a three-dimensional space [Fig. 4 (a)]. A diffuser (Optical Solutions, LSD 1◦ ) was placed in174

front of the camera [Fig. 4 (b)]. To emulate the scattering process in the DGS, captured images175

of LED-2 behind the diffuser at individual viewpoints were used as PSFs [Fig. 4 (c)]. The176

obtained PSFs was modeled as a 2D Gaussian distribution, and their standard deviations were177

estimated to between 28 and 36 pixels. The initial point clouds were generated randomly in the178

cyberspace, and the camera parameters and the center of target object for the projection process179

were estimated by Blender [29]. Figures 4(d) and (e) show the images captured with and without180

the diffuser, respectively. The diffuser scattered light from the LED array and made the positions181

of the LEDs indistinct in the captured images. Using the degraded images and the DGS, a digital182

twin was constructed. A rendered image of the digital twin is shown in Fig. 4 (f), The digital183

twin was constructed from 61 images captured from various viewpoints. Multiple views of the184

PSFs, captured images with and without the diffuser, and rendered images of the digital twin are185

provided in Supplementary Material Visualization 2. The constructed digital twin reproduces186

the shape of the LED array. The center positions of the individual LEDs were estimated by187

obtaining the centroid of the Gaussian clouds. To assess the accuracy of the position estimation,188

we determined the depth of each LED using a triangulation method. The depth values were189

iteratively calculated from pairs of the 61 captured images, and the average depth for each190

LED was used as its ground truth. While the depths of the LED-1, LED-2 and LED-3 were191

437.7, 416.7, and 393.6 mm, the centroid depths of the Gaussian clouds were 436.7, 415.3,192
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Fig. 3. (a) An image captured from a single viewpoint. (d) A point spread function
for emulating the scattering process. Rendered images of the digital twins using (c)
conventional GS and (d) proposed DGS. The bottom sections of (c) and (d) show
enlarged views of the areas highlighted by orange squares. (e, f) Pixel value profiles
along the blue lines shown in (c) and (d), respectively. (g) Linewidths along the red
lines with arrows in (c) and (d) from various viewpoints.



Fig. 4. (a) LED array used for the target object. (b) Optical setup for capturing the
LED array behind a diffuser. (c) Captured image of LED-2 with a diffuser, used as
a PSF. Images captured (d) with a diffuser and (e) without a diffuser. (f) Rendered
images of the digital twin constructed using DGS.

and 391.2, respectively. The average errors was 1.1 mm. These values indicate that the depth193

positions of the Gaussians are consistent with those obtained from the triangulation method.194

These results demonstrate that the digital twin constructed using DGS accurately reproduces the195

spatial distribution of the LED array.196

4. Discussion197

The use of a digital twin enables not only the reconstruction of a three-dimensional structure but198

also the representation of the object’s properties based on the modeling. For example, detailed199

modeling of light propagation in scattering media reveals both the optical properties of the200

medium and the target object [15]. Furthermore, simulating beam propagation through an object201

represented as point clouds allows for the estimation of the refractive index distribution [30].202

Depending on the modeling, multiple parameters that cannot be determined through a single203

type of measurement can be introduced to reveal the object’s characteristics. The feedback from204

the constructed model can be used to optimize measurement conditions, improving both the205

accuracy of the digital twin and the efficiency of the measurements. For example, the back206



side of an object, where no direct measurement data are available, can be estimated using a207

digital twin. This estimation can then provide feedback for subsequent measurements. The208

loss function also facilitates the refinement of actual camera parameters, such as position and209

orientation. Captured images, informed by feedback from the digital twin, are effectively used210

to optimize the parameters of the Gaussians representing the object. The loss function is211

applied iteratively to refine the camera parameters. This iterative process of optimizing the212

measurement conditions enables efficient acquisition of 3D object information while reducing213

the number of required images. Moreover, the feedback obtained from the digital twin can also214

be used to switch the measurement methods. Depending on the type of information desired,215

the measurement approach can be selected from various methods such as optical imaging and216

spectroscopy, allowing efficient acquisition of multimodal information about the object. Digital217

twin imaging is expected to be applied not only to optical measurements but also to various218

other measurement techniques by utilizing the obtained feedback.219

In this paper, we propose a digital-twin imaging method to model and reproduce the target220

object using DGS. The convolution of PSF integrated into GS reproduces the scattering process221

during image capture. The experimental results demonstrated that the topography of the digital222

twin constructed from the blurred images corresponded to that of the real object. Our findings223

suggest that digital-twin imaging can serve as an effective approach for observing objects behind224

scattering media.225

Funding. JSPS KAKENHI (Grant Number 20H05890, 25K21339).226

Disclosures. The authors declare no conflicts of interest.227

Data availability. Data underlying the results presented in this paper are not publicly available at this228

time but may be obtained from the authors upon reasonable request.229

References230

1. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing231

in complex media,” Nat. photonics 6, 283–292 (2012).232

2. S. Yoon, M. Kim, M. Jang, et al., “Deep optical imaging within complex scattering media,” (2020).233

3. S. Gigan, O. Katz, H. B. De Aguiar, et al., “Roadmap on wavefront shaping and deep imaging in complex media,”234

(2022).235

4. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,”236

2009 IEEE Conf. on Comput. Vis. Pattern Recognit. pp. 1964–1971 (2009).237

5. S. Kang, Y. Kwon, H. Lee, et al., “Tracing multiple scattering trajectories for deep optical imaging in scattering238

media,” Nat. Commun. 14, 1–12 (2023).239

6. A. Thendiyammal, G. Osnabrugge, T. Knop, and I. M. Vellekoop, “Model-based wavefront shaping microscopy,”240

Opt. letters 45, 5101–5104 (2020).241

7. A. K. Singh, D. N. Naik, G. Pedrini, et al., “Looking through a diffuser and around an opaque surface : A holographic242

approach,” Opt. Express 22, 7694–7701 (2014).243

8. A. S. Somkuwar, B. Das, R. Vinu, et al., “Holographic imaging through a scattering layer using speckle interferom-244

etry,” JOSA A 34, 1392–1399 (2017).245

9. J. Bertolotti, E. G. Van Putten, C. Blum, et al., “Non-invasive imaging through opaque scattering layers,” Nature246

491, 232–234 (2012).247

10. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and248

around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).249

11. Y. Okamoto, R. Horisaki, and J. Tanida, “Noninvasive three-dimensional imaging through scattering media by250

three-dimensional speckle correlation,” Opt. Lett. 44, 2526 (2019).251

12. Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern252

estimation and deconvolution,” Sci. Reports 8, 1–11 (2018).253

13. T. Yeminy and O. Katz, “Guidestar-free image-guided wavefront shaping,” Sci. advances 7, eabf5364 (2021).254

14. S. M. Popoff, G. Lerosey, M. Fink, et al., “Controlling light through optical disordered media: transmission matrix255

approach,” New J. Phys. 13, 123021 (2011).256

15. S. M. Popoff, G. Lerosey, R. Carminati, et al., “Measuring the transmission matrix in optics: An approach to the257

study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).258

16. A. Boniface, J. Dong, and S. Gigan, “Non-invasive focusing and imaging in scattering media with a fluorescence-259

based transmission matrix,” Nat. communications 11, 6154 (2020).260



17. R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. express 24, 13738–261

13743 (2016).262

18. Y. Nishizaki, M. Valdivia, R. Horisaki, et al., “Deep learning wavefront sensing,” Opt. express 27, 240–251 (2019).263

19. H. Liu, F. Wang, Y. Jin, et al., “Learning-based real-time imaging through dynamic scattering media,” Light. Sci.264

Appl. 13 (2024).265

20. F. Tao, B. Xiao, Q. Qi, et al., “Digital twin modeling,” J. Manuf. Syst. 64, 372–389 (2022).266

21. B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, “3D Gaussian Splatting for Real-Time Radiance Field267

Rendering,” (2023).268

22. Y. Li, X. Fu, S. Zhao, et al., “Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation,” (2023).269

23. Y. Cai, Y. Liang, J. Wang, et al., “Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis,” (2024).270

24. B. Lee, H. Lee, X. Sun, et al., “Deblurring 3D Gaussian Splatting,” (2024).271

25. O. Seiskari, J. Ylilammi, V. Kaatrasalo, et al., “Gaussian Splatting on the Move: Blur and Rolling Shutter Compen-272

sation for Natural Camera Motion,” (2024).273

26. M. Zwicker, H. Pfister, J. Van Baar, and M. Gross, “Ewa volume splatting,” in Proceedings Visualization, 2001.274

VIS’01., (IEEE, 2001), pp. 29–538.275

27. J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings of the IEEE conference on276

computer vision and pattern recognition, (2016), pp. 4104–4113.277

28. N. Snavely, S. M. Seitz, and R. Szeliski, “Photo Tourism : Exploring Photo Collections in 3D,” in ACM siggraph278

2006 papers, (2006), pp. 835–846.279

29. J. van Gumster, Blender For Dummies (For Dummies, 2015), 3rd ed.280

30. H. Wang, W. Tahir, J. Zhu, and L. Tian, “Large-scale holographic particle 3d imaging with the beam propagation281

model,” Opt. express 29, 29 (2021).282


